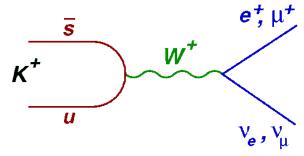
Indirect Searches for New Physics in Rare Kaon Decays

Francesca Bucci (INFN, Sezione di Firenze) on behalf of the NA62 Collaboration

SUSY 2011


August 28 - September 02, 2011

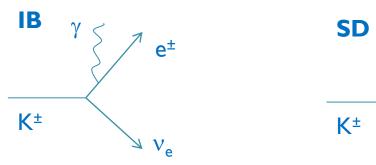
Introduction

- Precise measurements of FCNC processes in the B sector have severely restricted the parameter space of new-physics models
- Experiments at the LHC have started a direct exploration of the physics in the TeV range
- In this scenario, rare kaon decays are an outstanding opportunity to search for NP effects complementary to the high energy frontier and to the precision B physics

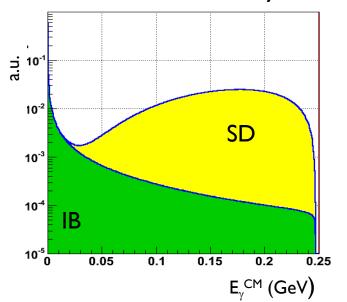
$R_K = \Gamma(K \rightarrow ev) / \Gamma(K \rightarrow \mu v)$ in the SM

The decay K→ev is helicity suppressed

- In the ratio $R_K = \Gamma(K \rightarrow ev/K \rightarrow \mu v)$ hadronic uncertainties cancel
- The SM prediction of R_K has reached <0.1% precision

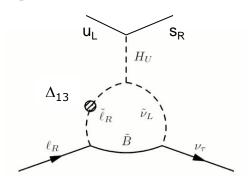

$$R_{K}^{SM} = \left(\frac{m_{e}}{m_{\mu}}\right)^{2} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \left(1 + \delta R_{K}^{rad. corr.}\right) = \left(2.477 \pm 0.001\right) \times 10^{-5}$$

[V. Cirigliano and I. Rosell Phys. Rev. Lett. 99 (2007) 231801]


• δR_K is the correction due to the Inner Bremsstrahlung part of the radiative K \rightarrow evy process

Radiative $K \rightarrow e \nu \gamma$ Decays

• In K \to ev γ (K_{e2 γ}), γ can be produced via internal bremsstrahlung (IB) or direct-emission (SD)


• By definition R_K is inclusive of IB radiation only

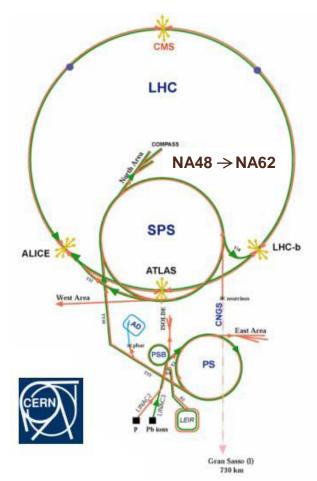
R_K beyond the SM

In MSSM, sizable sources of flavour violation in the lepton sector ($\Delta_{13} \sim 10^{-4}$) can induce deviation from R_{κ}^{SM} at % level (e.g. $\tan \beta = 40$, $m_H = 500$ GeV/c²)

[A. Masiero, P. Paradisi, R. Petronzio Phys. Rev. D74 (2006) 011701]

$$R_{K}^{LFV} = \frac{\sum_{i} K \to e \nu_{i}}{\sum_{i} K \to \mu \nu_{i}} \cong \frac{\Gamma_{SM} (K \to e \nu_{e}) + \Gamma(K \to e \nu_{\tau})}{\Gamma_{SM} (K \to \mu \nu_{\mu})}$$

$$\mathbf{R}_{\mathrm{K}}^{\mathrm{LFV}} = \mathbf{R}_{\mathrm{K}}^{\mathrm{SM}} \left[1 + \left(\frac{m_{\mathrm{K}}}{m_{\mathrm{H}}} \right)^{4} \left(\frac{m_{\mathrm{\tau}}}{m_{\mathrm{e}}} \right)^{2} \left| \Delta_{13} \right|^{2} \tan^{6} \beta \right]$$


Larger effects foreseen in B decays due to $(m_B/m_K)^4 \sim 10^4$ but experimentally challenging

The NA62 experiment

A fixed target experiment at the CERN SPS

The SPS is needed as LHC proton injector only part-time

For the remainder of the time it can provide 400 GeV/c protons for fixed target and neutrino experiments

NA62-R_K Detector (inherited by NA48/2)

Hadron calorimeter

Liquid krypton calorimeter
Hodoscope
Drift chamber 4
Anti counter 7

Helium tank

Drift chamber 3
Magnet

Drift chamber 2 Anti counter 6

Drift chamber 1

Kevlar window

and Data Taking

Magnetic spectrometer:

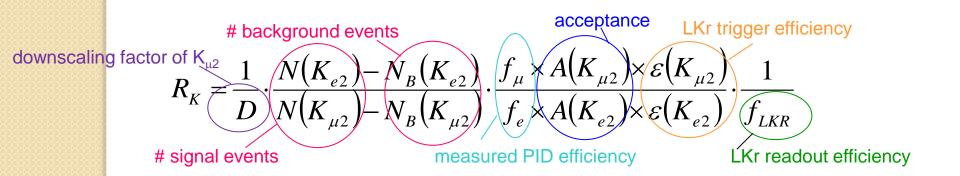
 $\sigma_{p}/p = (0.48 \oplus 0.009 \text{ p})\% \text{ (p in GeV/c)}$

Hodoscope:

Fast trigger for charged particle and timing for the event $(\sigma_t \sim 150 ps)$

LKr electromagnetic calorimeter:

 $\sigma_{E}/E = (3.2/\sqrt{E} \oplus 9.0/E \oplus 0.42)\%$ (E in GeV)


 $\sigma_x = \sigma_y \sim 1.5$ mm for E=10 GeV

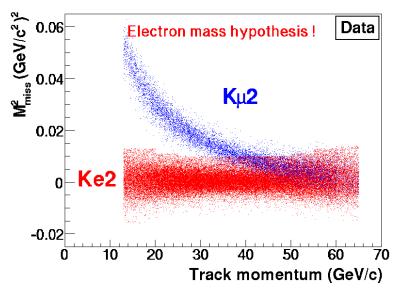
NA62 data taking:

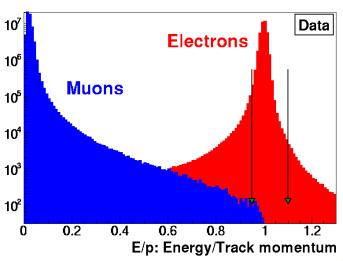
- Four months in 2007 (mostly K⁺ only)
- Two weeks in 2008 (special dataset for systematics uncertainties study)

R_K Measurement Strategy

- $K^{\pm} \rightarrow e^{\pm} v$ (K_{e2}) , $K^{\pm} \rightarrow \mu^{\pm} v$ $(K_{\mu 2})$ collected simultaneously:
 - No dependence on K flux
 - Cancellation of several effects at first order

Analysis performed in bins of the reconstructed lepton momentum

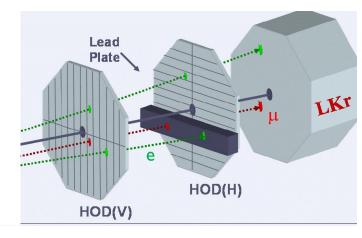

K_{e2} and K_{u2} Selection


Geometry

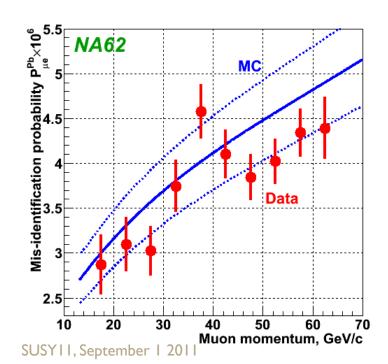
- eometry
 One reconstructed charged track දුම්
- 13
- Geometrical acceptance cut
- Cut on K decay vertex position
- Photon veto using LKr

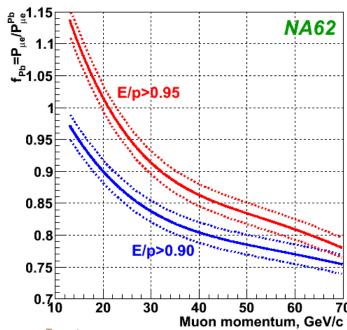
Kinematics

- Missing mass: $M_{miss}^2(I) = (P_K P_I)^2$
- \circ -M₁²<M_{miss}²(I)< M₂²
- Particle ID (E_{LKR}/p_{spectr})
 - $e ((E/p)_{min} < E/p < 1.1)$
 - μ (E/p < 0.85)



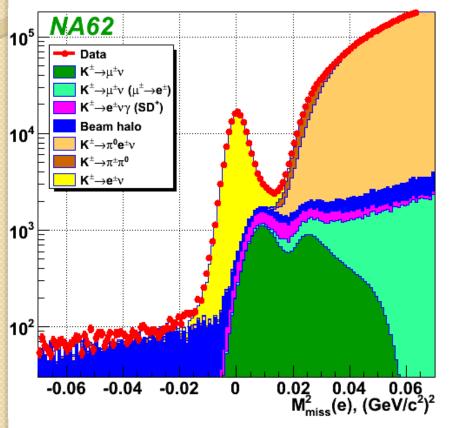
 $K_{\mu 2}$ decay is the largest background source


- Catastrophic energy loss in or in front of the LKr $P_{\mu e} = P(\mu \rightarrow e) \sim 3 \times 10^{-6} \Rightarrow P_{\mu e}/R_K \sim 10\%$
- $\mu^{\pm} \rightarrow e^{\pm} v v$ decays before the first DCH (suppressed by muon polarization effects)


- \circ Need direct measurement of $P_{\mu e}$
- To avoid electron contamination from muon decay (~10⁻⁴) a 9.2 X₀ thick lead wall covering 18% of the acceptance was installed between the HOD planes

Muon catastrophic energy loss is the largest background source

- P_{ue} is modified by the Pb wall
- The correction $f_{Pb} = P_{\mu e} / P_{\mu e}^{Pb}$ evaluated with a dedicated Geant4-based simulation


 R_K is inclusive of IB radiation only \Rightarrow the SD contribution must be carefully estimated and subtracted

- The structure-dependent (SD) $K^{\pm} \rightarrow e^{\pm} \nu \gamma$ process has two components: SD⁺ (positive photon helicity) and SD⁻ (negative photon helicity)
- SD⁻ decays and the interference between the IB and SD processes are negligible
 - [J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, arXiv:hep-ph/9411311]
- The SD⁺ background contribution has been estimated by MC simulation using a recent measurement of the $K^{\pm} \rightarrow e^{\pm} \nu \gamma$ (SD⁺) differential decay rate
 - [F. Ambrosino et al., Eur. Phys. J. C 65 (2010) 703]

Background from beam halo muons has been directly measured on data

- K⁺ only sample used to measure background in K⁻ sample and vice-versa
- K-less sample (both K⁺ and K⁻ beams blocked, only muon halos alllowed)
- Control samples normalized to the data in the M_{miss}^2 region populated mainly by beam halo events.
- Probability to reconstruct a K_{e2}^{\pm} candidate due to a K^{\mp} decay with e^{\pm} emission (~10⁻⁴) taken into account

K_{e2} Sample

145,958 K $^{\pm}\rightarrow$ e $^{\pm}$ v candidates (99.28±0.05)% e[±] ID efficiency

Decay

$$K^{\pm} \rightarrow \mu^{\pm} \nu$$

$$K^{\pm} \rightarrow \mu^{\pm} \nu \; (\mu \rightarrow e)$$

$$K^{\pm} \rightarrow e^{\pm} v \gamma (SD^{+})$$

$$K^{\pm} \rightarrow \pi^0_D e^{\pm} v$$

$$\mathrm{K^{\pm}} \rightarrow \pi^{\pm} \pi^{0}{}_{\mathrm{D}}$$

Total

B/(S+B)

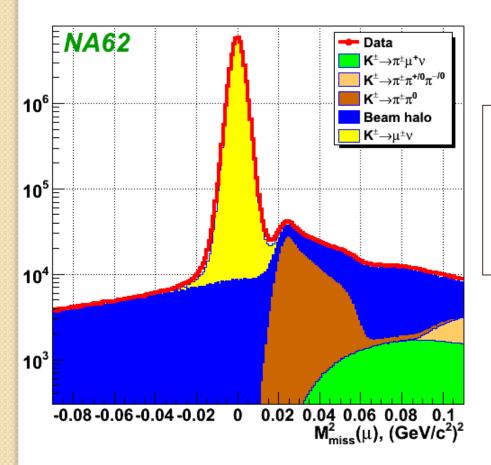
$$(5.64 \pm 0.20)\%$$

$$(0.26 \pm 0.03)\%$$

$$(2.60 \pm 0.11)\%$$

$$(0.18 \pm 0.09)\%$$

$$(0.12 \pm 0.06)\%$$

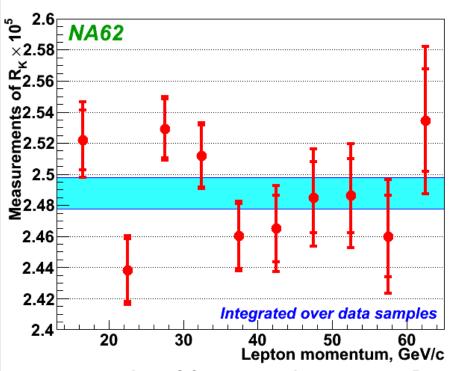

$$(0.04 \pm 0.02)\%$$

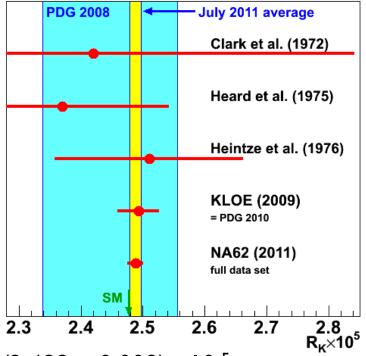
$$(2.11 \pm 0.09)\%$$

$$(10.95 \pm 0.27)\%$$

$K_{\mu 2}$ Sample

The only significant background source in the $K_{\mu 2}$ sample is the beam halo measured using the same technique as for the K_{e2} sample


42.817 · 10⁶ K[±] \rightarrow µ [±] v candidates (collecting with downscaling factor D=50 or D=150)

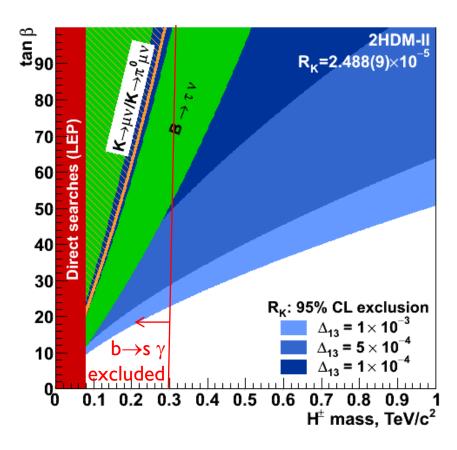

$$B/(S+B) = (0.50 \pm 0.01)\%$$

NA62 Result (full data set)

Fit over 40 R_K measurements (4 data samples \times 10 momentum bins) including correlations: $\chi^2/\text{ndf}=47/39$

 $R_{K} = (2.488 \pm 0.007_{stat} \pm 0.007_{syst}) \times 10^{-5} = (2.488 \pm 0.010) \times 10^{-5}$

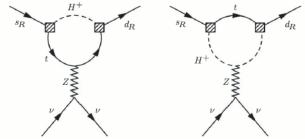
July 2011 world average : $R_K = (2.488 \pm 0.009) \times 10^{-5}$


SUSYII, September I 2011

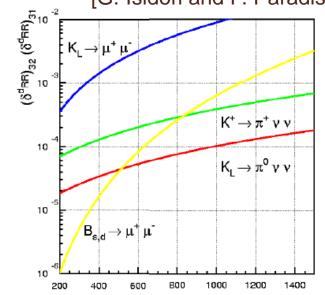
Francesca Bucci

16

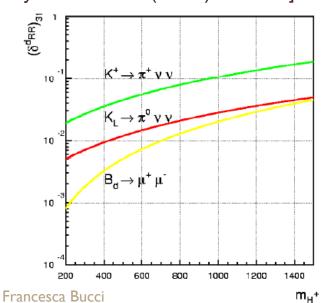
R_K Sensitivity to New Physics


For non-tiny values of the LFV s-lepton mixing Δ_{13} the sensitivity to H^{\pm} in R_K is strong

17

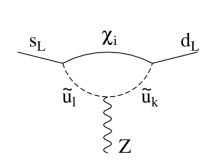

$K \rightarrow \pi \nu \nu$ in MSSM

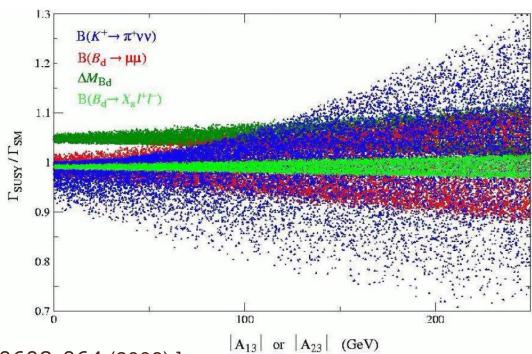
Charged Higgs/top quark loops at large $tan\beta$ and with non-MFV right-right breaking terms



can induce sizable modifications of $K \rightarrow \pi \nu \nu$ amplitudes [G. Isidori and P. Paradisi, Phys. Rev. D73 (2006) 055017]

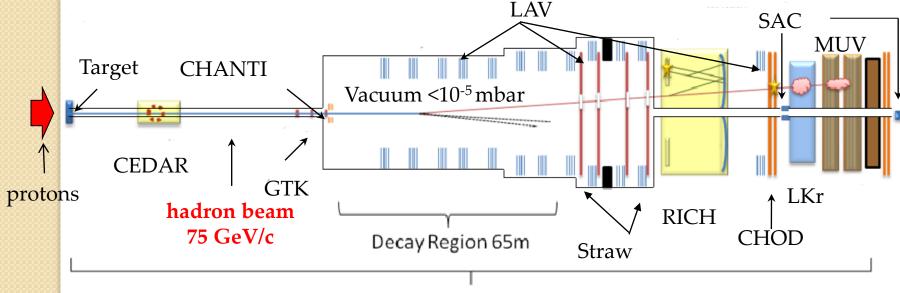
m_H+




SUSYII, September I 2011

$K \rightarrow \pi \nu \nu$ in MSSM

Non-standard model effects induced by chargino-squarks loop in the presence of non-MFV up-type trilinear terms are maximal in the $K \rightarrow \pi \nu \nu$ decays



[G. Isidori et al. JHEP 0608:064 (2006)]

NA62

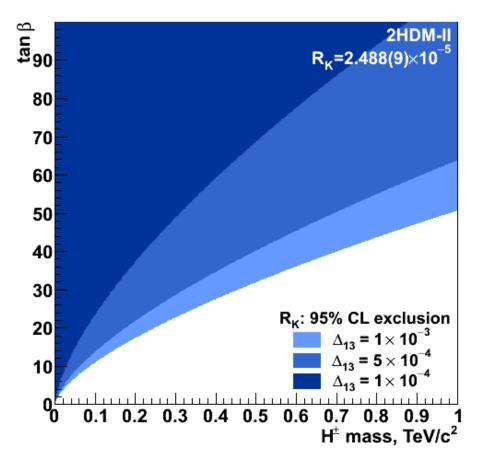
Branching ratio measurement of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ with 10% accuracy

- \bigcirc O(100) K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ events (2 years of data taking)
- I0/I signal to background ratio

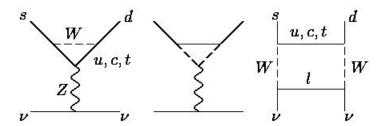
Total Length 270m

- End 2012: first technical run
- Physics data taking driven by CERN accelerator schedule

Conclusions


- R_K measurement:
 - The analysis of the full data sample taken by NA62 completed
 - The measured value is $R_K = (2.488 \pm 0.010) \times 10^{-5}$
 - The precision achieved is 0.4%
 - The NA62 could improve the precision down to 0.2%
- B(K⁺ $\rightarrow \pi^+ \nu \nu$) measurement with NA62:
 - High sensitivity to New Physics
 - 10% precision BR measurement expected in two years of data taking
 - Experiment under construction

SUSY11, September 1 2011 Francesca Bucci 22


R_K Sensitivity to New Physics

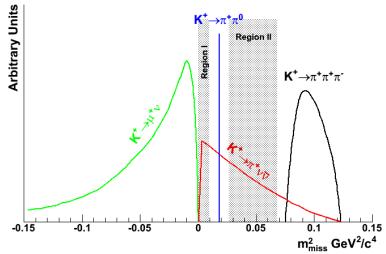
For non-tiny values of the LFV s-lepton mixing Δ_{13} the sensitivity to H[±] in R_K is strong

$K \rightarrow \pi \nu \overline{\nu}$ Decays

• FCNC decays mediated by Z penguins and box diagrams \rightarrow strongly suppressed in the SM (<10⁻¹⁰)

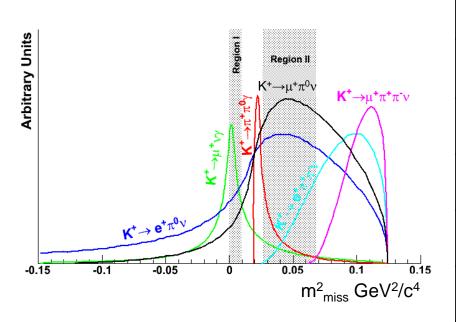
Calculable with excellent precision [Phys.Rev. D83 (2011) 034030]

BR(K⁺
$$\rightarrow \pi^{+} \nu \bar{\nu}$$
) = $(7.81 \pm 0.75 \pm 0.29) \times 10^{-11}$
BR(K_L $\rightarrow \pi^{0} \nu \bar{\nu}$) = $(2.43 \pm 0.39 \pm 0.06) \times 10^{-11}$


Background Rejection

Signal signature:

- Incoming high momentum(75 GeV/c) K⁺
- Outgoing low momentum(<35 GeV/c) π^+ in time with the incoming K⁺


$$P_{K} \qquad P_{\pi} \qquad m_{miss}^{2} \cong m_{K}^{2} \left(1 - \frac{|P_{\pi}|}{|P_{K}|}\right) + m_{\pi}^{2} \left(1 - \frac{|P_{K}|}{|P_{\pi}|}\right) - |P_{K}| P_{\pi} |\theta_{\pi K}|$$

Decay	BR
$K^+ \rightarrow \mu^+ \nu (K_{\mu 2})$	0.64
$K^+{\to}\pi^+\pi^0(K_{\pi2})$	0.21
$K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$ $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$	0.07

Particle Identification

- K⁺ positive identification (CEDAR)
- π/μ separation (RICH)
- π /e separation (E/p)

Decay	BR
$K^+ \rightarrow \pi^0 e^+ \nu (K_{e3})$	0.051
$K^+ \rightarrow \pi^0 \mu^+ \nu (K_{\mu 3})$	0.034
$K^+ \rightarrow \mu^+ \nu \gamma (K_{\mu 2 \gamma})$	6.2×10 ⁻³
$K^+ \rightarrow \pi^+ \pi^- e^+ v (K_{e4})$	4.1×10 ⁻⁵
$K^+ \rightarrow \pi^+ \pi^- \mu^+ \nu (K_{\mu 4})$	1.4 ×10 ⁻⁵

Sensitivity

Decay Mode	Events
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹² decay/year]	55 evt/year
$K^+ \to \pi^+ \pi^0 \ [\eta_{\pi 0} = 2 \times 10^{-8} \ (3.5 \times 10^{-8})]$	4.3% (7.5%)
$K^+ \rightarrow \mu^+ \nu$	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%
Other 3 – track decays	≤1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible
Expected background	≤13.5% (≤17%)

Definition of "year" and running efficiencies based on NA48 experience: ~100 days/year and 60% overall efficiency

Techniques for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

Stopped

- Work in kaon frame
- High kaon purity
- Compact detectors

In-Flight

- Decays in vacuum
- RF separated or not separated beams
- Extended decay regions

Exp	Machine	Meas. or UL 90% CL	Notes
	Argonne	<5.7×10 ⁻⁵	Stopped; HL Bubble Chamber
	Bevatron	<5.6×10 ⁻⁷	Stopped; Spark Chambers
	KEK	<1.4×10 ⁻⁷	Stopped; $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
E787/E949	AGS	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	Stopped
NA62	SPS		In Flight; Unseparated
P996	FNAL		Stopped; Tevatron as strecher ring?

The charm contribution can be fully neglected since it proceeds in the SM almost entirely through direct CP violation \rightarrow determination of η

Exp	Machine	Meas. or UL 90% CL	Notes
KTeV	Tevatron	<5.7×10 ⁻⁷ (π ⁰ →eeγ)	
E391a	KEK-PS	<2.6×10 ⁻⁸	
КОТО	J-PARC		Aim at 2.7 SM evts/3y
KOPIO			Opportunity at Project X ?

Need a huge number of K_L decays NA48 K_L flux corresponding to 3×10^{10} /year NA62 possible K_L flux 5-10 times NA48 one After SPS upgrade 100 times more